DNA for Genealogists (Intro)

By Robert Casey August 11, 2012

http://www.rcasey.net/present

Intro to DNA for Genealogists

Types of tests available

Y-DNA – uses both Y-STR tests and Y-SNP tests

- Limited to all male lines only
- 100 to 1,000 years (Y-STRs)
- 500 to 50,000+ years (Y-SNPs)

♦ Autosomal – 50 % change every generation

- Tests all ancestral lines
- Limited to 25 to 150 years
- Mitochondrial (mtDNA)
 - Limited to all female lines only
 - 1,000 to 50,000+ years
 - No fast mutating STRs to complement

How mtDNA works

In the only DNA that is not part of the nucleus (each cell has 100 -1,000 mtDNA strands available) Interpretent terms of the second s In the second No fast moving markers like Y-STRs available Only deep ancestral information available – 1,000 years or more Limited future growth of discovery of new mutation due to the 16,000 base pair limitation Not recommended for testing

How Autosomal works

How Autosomal works (Recombination at work)

Parents – 50 % - 1950 (all)

◆ 2G grandparents – 6.3 % - 1870 (90 %)

♦ 4G grandparents – 1.4 % - 1825 (20 %)

GEDMATCH Database - atDNA

How Y-STR works

How Y-SNPs work

Four primary testing companies

\diamond	23andme has strong autosomal test and useful Y-SNP test but lacks critical Y-STR testing and advanced Y-SNP testing
۲	Ancestry.com offers reasonable entry level Y-STR tests but has no Y- SNP testing or high resolution Y-STR testing
٢	Ancestry.com is beta testing autosomal but will not release actual raw data – do not order this predatory offering
	Family Tree DNA offers unbelievable Y-SNP testing that will eventually become the primary tool for future genealogical research
0	All three companies offer robust mtDNA test but only FTDNA offers full mtDNA test (do not recommend testing of mtDNA from any company)
	National Geographic and FTDNA recently announced NatGeo 2.0 test (orders being taken – results due in the fall) includes static test of massive Y-SNPs, extensive mtDNA and limited ethnic autosomal.

How do Y-STRs work

Only found on Y-DNA chromosome Y-STRs are where patterns repeat many times and the number of repeats vary generation to generation Testing companies scan the Y-DNA until they find the landmark indicating they have arrived at the Y-STR From that landmark, they then know how to locate the repeating patterns and count the number of repeats (Short Tandem Repeats) The Y-STR values (numbers of repeats) vary over time allowing genealogists to track ancestors

How do Y-SNPs work

- Only found on Y chromosome
- Most are one time mutations
- Discovers branches from 500 to 50,000 years
- Unlike Y-STRs, have a very hierarchical relationships (father / son relationships)
- Create true genealogical like descendant tree
- Once you find your most recent Y-SNP (usually 500 to 2,000 years old) Y-STRs complement Y-SNPs for more recent mutations

Recent explosion from 2,000 to 10,000 Y-SNPs, many more to be discovered in the future

How Autosomal tests works

How mtDNA works

Books to get up to speed with

Trace Your Roots with DNA by Megan Smolenyak & Ann Turner, 2004 solid book – not real deep DNA & Genealogy by Colleen Fitzpatrick & Andrew Yeiser, 2005 solid book - little more depth ONA & Social Networking: A Guide to Genealogy by Debbie Kennett, 2012 - updated (includes autosomal) Family History in the Genes by Chris Pomeroy, 2007 – by far the best on Y-DNA – more in depth & complex DNA and Family History by Chris Pomeroy & Steve Jones, 2004 – both versions worth getting Go to Amazon.com and search DNA & genealogy

Forums, DNA Projects

Cost of Testing (Retail - FTDNA only)

Always join project before ordering to get the project discounts & use twice a year sales Family Finder (autosomal) - \$289 NatGeo 2.0 (Y-SNPs, mtDNA, autosomal)-\$199 – only from National Geographic extremely robust test – leading edge ♦ Y-STR - \$169 (37), \$268 (67) & \$359 (111) Full mtDNA - \$299, partial \$159 Special order Y-SNPs - \$29 each ♦ Walk the Y - \$950

Cost of testing – other companies

23andme – "one size fits all" test - \$299 for health, autosomal and limited Y-SNPs (no Y-STRs) – first with autosomal 23andme - good starting point but many end up migrating to FTDNA for more Y-DNA testing – health markers are unique Ancestry.com – Y-STR \$149 (33) & \$179 (46) – No Y-SNPs Ancestry.com – 46 marker is good starting test but many migrate to FTDNA for more Y-STR & Y-SNP testing Ancestry.com – Autosomal \$99 to existing customers (no raw data will be provided & scope of test not revealed do not order – very predatory offering) Ancestry.com – Partial mtDNA \$179 (NatGeo 2.0 better offering)

Future trends

Sample atDNA comparison

War stories – atDNA for Casey

Questions & Answers

- It takes a while to get up to speed. Genetic DNA takes as many skills as traditional genealogy
- Too high expectations by many
- Just get started be sure to have well defined goals so you can later assess if you met those goals
- A lot of willing volunteers to assist make it a two way interchange (test what they recommend)
- Before we talk about a couple of advanced topics or future trends, it is time for questions & answers

Overlapping Haplotypes

- This issue is rarely covered by books & web sites
 Some haplotypes contain such common DNA marker values that even very close matches may not related
 - As much of 10 to 20 percent of all submissions fall into the "overlapping haplotype" scenario
- Genetic distance (the number of mutations that are different) is not always reliable by itself
- You want to categorize non-surname matches into two categories: "overlapping haplotypes" or "possible NPEs"
- Overlapping haplotypes need to be filtered out by Y-SNP tests
- NPEs can be a new gold mine of genealogical treasures
- There are methodologies for determining the category (too advanced for this session)
- http://www.rcasey.net/DNA/Casey/Sources/Overlapping_Haplotypes_Jobling_2000.pdf
 - http://www.rcasey.net/DNA/Casey/Analysis/Analysis South Carolina.html

Fingerprints are key

- Most analysis of Y-STRs depends too much only on genetic distance (number mutations that differ)
- The common mutations are a much better indicator of relatedness
- Determine the haplotype of your Y-SNP and determine the fingerprint of your genetic cluster (the mutations between the Y-SNP and your cluster)
- Combination of Y-SNP, fingerprint matches, genetic distance and surname are a power combination of information that must be used in any analysis

August, 2012					31

The future

0		
	The costs of testing of the full genome will be under \$1,000 in the next few years – so you never have test any donor again just analyze	
۲	The amount of useful data will increase by 1,000,000 fold !	
	atDNA is currently under 1,000,000 base pairs – it could be extended to 10M or 100M base pairs – but the usefulness of the information exponentially decreases	
	mtDNA is only 16,000 base pairs – already being analyze since it is such a small DNA strand	
	Y-STRs are estimated to between 400 and 500 useful Y-STRs	
	You have to double the number to have an impact or use faster mutating markers which require more submissions to analyze	
۲	Y-SNPs – FTNDA has only around 500 useful Y-SNPs in the haplotree (if you ignore duplicate SNPs)	
۲	NatGeo 2.0 will test 12,000 Y-SNPs – probably doubling 500 to 1,000 useful SNPs for western European research (majority are Chinese and Sardinian)	
٢	It is believe that useful Y-SNP should exceed 50,000 when it becomes economical feasible to scan the entire Y-DNA strand	
Αι	ugust, 2012 32	

Y-SNP analysis is the future

\bigcirc	Every surname cluster should get several Y-SNPs that create branches	
	within surname clusters	
	The Y-SNPs have father-son relationships vs. Y-STRs which are only clusters of related submissions that overlap with each other	
	Between all combinations of Y-STRs and Y-SNPs, most living individual as well as most deceased ancestors can have unique haplotypes assigned	
٨	It will take several years to establish the connections between the thousands of Y-SNPs and most research is done by fellow researchers	
	Genealogical Y-SNPs are already being discovered with only around 500 useful Y-SNPs, 50,000 Y-SNPs will produce thousands more	
٢	Bennett Greenspan (president of FTDNA) stated that Y-SNPs will be the genealogical tree and the Y-STRs will become leaves on this tree	
٥	FTDNA is the only genetic testing company doing any serious Y-SNP advancement while others take advantage of their research	
	NatGeo 2.0 provides a static 12,000 Y-SNP test starting in November and is taking orders now (tests are processed by FTDNA and uploadable to FTDNA databases at no charge)	
Α	ugust, 2012 33	

IT costs will drive testing costs

